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Spatially-explicit knowledge of the timing, frequency, and intensity of forest disturbances is essential for for-
est management, yet little is known about how disturbances such as forest harvests and insect outbreaks
might accumulate in their effects over time. Capturing the many forest harvest and insect defoliation events
occurring over twenty-five years, we transformed a series of Landsat images into cumulative disturbance
maps covering Green Ridge State Forest (GRSF) and Savage River State Forest (SRSF) in western Maryland.
These maps summed yearly ΔDI images, which were defined as the change in a yearly tasseled cap distur-
bance index (DI), relative to a synthetic reference condition map created by finding the minimum DI value
for all years. Intensive field-plot surveys and AVIRIS imagery collected during the summer of 2009 provided
measurements of forest structure and canopy nitrogen. With these data, we found that while the most recent
year's ΔDI had little relation, increases in the cumulative DI were related to decreased field-measured current
canopy cover (R2=0.66 at GRSF, 0.67 at SRSF and 0.34 combined) and watershed-averaged AVIRIS canopy N
(R2=0.40 at GRSF, 0.57 at SRSF and 0.54 combined). The latter relationship was obscured at the field-plot
level of analysis, suggesting that fine scale studies will also need to account for other drivers (e.g. species
composition) of variability in canopy N. Nevertheless, our study demonstrates that Landsat time series data
can be synthesized into cumulative metrics incorporating multiple disturbance types, which help explain im-
portant cumulative disturbance-mediated changes in ecosystem functioning.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Appalachian forests provide many ecosystem services, including
carbon sequestration by taking in more atmospheric carbon dioxide
(CO2) during photosynthesis than they release during respiration.
Similarly, the ability of a forest to retain nitrogen (N) from atmo-
spheric deposition (e.g., acid rain) provides protection from acidifica-
tion and eutrophication in streams and estuaries, processes that can
endanger fisheries and human health (Driscoll et al., 2003; Likens,
Bormann, Johnson, Fisher, & Pierce, 1970). These Appalachian forest
ecosystem services are fundamentally linked to the canopy structure
and concentration of N in canopy leaves (i.e., canopy N). Nitrogen is
the major element limiting productivity in many terrestrial ecosys-
tems (Vitousek & Howarth, 1991), including forests of the Eastern
U.S. (LeBauer & Treseder, 2008). At the plant level, foliar N exerts a
strong control over rates of photosynthesis (Evans, 1989; Wright
et al., 2004), and of forest productivity and carbon sequestration at
rights reserved.
the canopy level (Ollinger et al., 2009; Pan, Hom, Jenkins, & Birdsey,
2004; Smith et al., 2002). Canopy N is also related to the ability of a
forest to retain atmospheric N deposition (Aber et al., 1998), which
has risen alongside atmospheric [CO2] over the last century due to in-
creased fossil fuel consumption and artificial fertilizer production
(Galloway et al., 2008).

Remote sensing of canopy N through the use of hyperspectral in-
struments has greatly expanded the scale at which canopy N may
be observed, enabling studies to be carried out across entire forested
landscapes (Asner, 1998; Kokaly, 2001; Martin & Aber, 1997; Martin,
Plourde, Ollinger, Smith, & McNeil, 2008; Ollinger & Smith, 2005;
Ollinger et al., 2009; Wessman, Aber, Peterson, & Mellilo, 1988).
McNeil, de Beurs, Eshleman, Foster, and Townsend (2007) recently
used these methodologies to link gypsy moth defoliation measured
by MODIS with decreases in canopy N measured by NASA's Hyperion
instrument.

While only recently explored with remote sensing (e.g., McNeil
et al., 2007; Townsend, Eshleman, & Welcker, 2004), disturbances
such as gypsy moth defoliation and logging are known to leave a
marked ecological legacy, often manifested in the form of reduced nu-
trient availability (Eshleman, Morgan, Webb, Deviney, & Galloway,
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Fig. 1. Map of the study areas with field plots indicated by the white circles.
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1998; Goodale & Aber, 2001; Latty, Canham, & Marks, 2004; Vitousek
et al., 1979) and through reduced canopy cover (Bormann & Likens,
1979; Likens, Bormann, Pierce, & Reiners, 1978). Several recent stud-
ies have outlined implications of using past disturbance history in
models of forest condition (e.g., Pan et al., 2011; Sader & Legaard,
2008). Indeed, most forests have a long disturbance history consisting
of multiple disturbance events and land use changes; yet, there re-
mains little understanding as to the cumulative effect of these distur-
bances on canopy N and forest structure.

Two of the disturbance types impacting eastern North American for-
ests are gypsy moth defoliation and clear-cut harvesting. Gypsy moth
(Lymantria dispar) defoliation represents an ongoing, ephemeral distur-
bance affecting eastern forests, with dominant outbreak periods occur-
ring in approximately 8–10 year intervals and subdominant outbreaks
in 5–6 year intervals (Haynes, Liebhold, & Johnson, 2009; Johnson,
Liebhold, & Bjørnstad, 2006). Evidence shows that plants may lose
twice as much N through herbivory than they would through senes-
cence (Chapin, Matson, & Mooney, 2002). Likewise, studies have
shown dramatically altered forest structure, sustained nutrient losses,
and shifts in species composition from clear-cut forests (Beck &
Hooper, 1986; Likens et al., 1978; Vitousek & Reiners, 1975).

Several recent studies have successfully used the NIR and SWIR
bands of the temporally rich Landsat dataset for mapping disturbance
at the landscape scale (Cohen, Yang, & Kennedy, 2010; Jin & Sader,
2005; Kennedy, Cohen, & Schroeder, 2007; Kennedy, Yang, & Cohen,
2010). In particular, the disturbance index (Healey, Cohen, Zhiqiang,
& Krankina, 2005) has been successfully used to map disturbances
in a variety of forest types (DeRose, Long, & Ramsey, 2011;
Eshleman, McNeil, & Townsend, 2009; Hais, Jonasova, Langhammer,
& Kucera, 2009), including Appalachian forests. Substantial recent
work has been focused on reconstructing past disturbance histories
using Landsat time series with automated approaches that identify
temporal trajectories of disturbance and recovery (Cohen et al.,
2010; Goodwin, Coops, Wulder, & Gillanders, 2008; Huang et al.,
2010; Kennedy et al., 2007, 2010; Thomas et al., 2011). A cumulative
approach compliments such work by examining the additive influ-
ence of disturbance using stacks of Landsat data, thereby contributing
insight on disturbance legacies in Eastern forests. Through the link-
age of remotely sensed cumulative disturbance maps, such as from
Landsat, to data on canopy nutrients we can develop a better under-
standing of long-term processes of nutrient dynamics. By examining
the cumulative impacts of disturbances on forest ecosystems, we
may gain insight into effective management strategies, and improve
assessments of a variety of ecosystem services, such as carbon se-
questration and nitrogen retention.

Our study sought to assess the cumulative impact of disturbance
by analyzing the additive affects of multiple years of disturbance on
forest dynamics. We explicitly addressed two major hypotheses
about the relationship between canopy nitrogen, forest structure,
and cumulative disturbance history: (1) as cumulative disturbance
increases, we expected to see a subsequent decrease in canopy
cover and (2) as cumulative disturbance increases, we expected to
see a subsequent decrease in canopy N. Related to this, we postulated
that past disturbances in a forest diminish over time in importance,
yet still influence the current structure and nutrient status of a forest
and that change maps of the current condition of a forest are not suf-
ficient to explain patterns in the canopy structure and chemistry of
that forest. Our study included analyses at the plot- (60 m radial)
and watershed- (~0.8 km2) scales.

2. Methods

2.1. Study areas

We conducted our research within two study areas: Green Ridge
State Forest (GRSF) and Savage River State Forest (SRSF), both in
western Maryland. These areas are delineated by the forest bound-
aries, but slightly expanded to include the complete hydrological
unit codes (HUCs) at the HUC-11 level (Fig. 1). GRSF is in the warmer,
dryer Ridge and Valley physiographic province in the rain shadow of
the Allegheny Front and is dominated by oaks (Mash, 1996), while
SRSF lies in the cooler, wetter Allegheny Plateau physiographic prov-
ince and is dominated by northern hardwoods and oaks (Schaefer
& Brown, 1991). Both areas experience considerable disturbance—
including logging and gypsy moth defoliation, which typically occurs
at 10–20 year intervals.
2.2. Field and laboratory methods

We sampled from a selection of existing plots that have been used
in previous studies and supplemented with newly created sites for
a total of twenty-eight 60-meter radial field plots within GRSF
(18 plots) and SRSF (10 plots). These plots spanned the notable gra-
dients of species types and disturbance histories (Table 1). To define
the disturbance history gradients, we used ancillary data from per-
sonal accounts of state foresters, USDA sketch maps of gypsy moth
defoliation (http://na.fs.fed.us/fhp/ta/av/) and Maryland Department
of Natural Resources (DNR) maps of clear-cut timber harvests.
Though the aerial sketch maps may have varying levels of quality
due to different factors (e.g., different individual map creators), they
have been used successfully in other studies to document historical
defoliation patterns (e.g., Vogelmann, Tolk, & Zhu, 2009). We sam-
pled plots representing six levels of historical disturbance identified
using the ancillary data: not disturbed, harvested, harvested and
defoliated, defoliated early (pre-1993), defoliated late (post-1993),
and defoliated both early and late. We further divided the field plots
into three major functional types (oaks, conifers, and northern hard-
woods) in order to account for variability caused by species influ-
ences (Chapman, Langely, Hart, & Koch, 2006).

We collected all field data during July 2009 to maintain phenolog-
ical consistency with the planned AVIRIS flights over GRSF and SRSF.
Field data collection at the plot-level consisted of performing surveys
using the point-quadrat camera method (Aber, 1979; MacArthur &
Horn, 1969; Smith & Martin, 2001) to determine the fractional pro-
portion of each species in the canopy and collecting species-specific
green leaf samples for lab analysis of foliar chemistry, which ulti-
mately allowed us to scale up canopy N values from the leaf level,
then to the plot level, and finally, to the canopy level. We collected six
estimates of canopy cover per plot using three different methods—
densitometer readings, percent canopy cover estimates by cover
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Table 1
Sample design matrix displaying number of plots sampled within each disturbance his-
tory and species type category. Disturbance histories are as follows: N.D. = not dis-
turbed, H = harvested, De = defoliated early (pre-1991), Dr = defoliated recently
(post-1991), De & r = defoliated both early and recently, and H & D = harvested and
defoliated. N.H. refers to northern hardwood species.

N.D. H De Dr De & r H & D

Oak 3 2 2 2 1 2
N.H. 1 2 3 2 1 3
Conifer 2 3 1 2 1 3

Table 2
Ancillary GIS data and Landsat imagery used for creation of the cumulative disturbance
indices and subsequent analyses.

Data Source and date

Timber harvest GIS
shapefiles

Forest Managers at GRSF and SRSF (1969–2001)

Gypsy moth defoliation
shapefiles

United States Forest Service (1984–2008)

Species composition
maps

Foster and Townsend (2004) (2000)

Image date Path Row Sensor Study area

9/19/1984 16 32/33 Landsat TM 5 GRSF and SRSF
8/18/1987 17 32/33 Landsat TM 5 SRSF
8/03/1990 16 31/33 Landsat TM 5 GRSF
8/22/1991 16 32/33 Landsat TM 5 GRSF
6/24/1993 16 32/33 Landsat TM 5 GRSF and SRSF
6/09/1999 16 33 Landsat TM 5 SRSF
8/04/1999 16 32/33 Landsat ETM+ GRSF
8/22/2000 16 32/33 Landsat ETM+ GRSF
7/24/2001 16 32/33 Landsat ETM+ GRSF
8/12/2002 16 32/33 Landsat ETM+ GRSF
6/25/2005 16 32/33 Landsat TM 5 GRSF and SRSF
8/06/2006 17 32/33 Landsat TM 5 SRSF
8/25/2007 17 32/33 Landsat TM 5 SRSF
7/19/2008 16 32/33 Landsat TM 5 GRSF
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class, and percent canopy cover estimates by height—to provide in-
formation on forest structure.

In addition to performing plot surveys, we sampled individual
trees representing dominant and subdominant species for fresh and
dry leaf analysis of foliar chemistry. We pooled samples of individuals
from high, medium, and low canopy heights by collecting small twigs
using a pole pruner or shotgun with steel shot (McNeil et al., 2007;
Smith & Martin, 2001; Townsend, Foster, Chastain, & Currie, 2003).
We transported fresh leaf samples from the field to the laboratory at
West Virginia University using Ziploc bags containing moist paper
towels in a portable cooler to keep wet samples fresh (Garnier,
Shipley, Roumet, & Laurent, 2001; Vaieretti, Diaz, Vile, & Garnier,
2007).We transported dry leaf samples from the field to the laboratory
using paper bags.

Laboratory analysis of the field data involved two major compo-
nents: the fresh analysis and the dry analysis. On the fresh leaves,
we calculated leaf mass per area (LMA; g cm−2) by measuring sam-
ples for fresh leaf mass (punching holes using a specified area for
broadleaf species and scanning and calculating area for needleleaf
species) and then drying and reweighing samples for dry leaf mass.
The LMA measurements provided an essential element in the scaling
of mass-based foliar N data from the leaf- to the plot-level. For the dry
leaf analysis, we oven-dried all samples at 60 °C for 48 h and then
ground them using a Willey Mill to pass through a 1-millimeter
mesh screen. These ground leaf samples were then wrapped,
weighed, and sent through a CNS analyzer to derive percent N values.
We combined the LMA measurements and percent N values to calcu-
late plot-level canopy N by using the mean species foliar N concentra-
tion per plot, weighted by fraction of canopy foliar mass per species at
each plot (Smith & Martin, 2001).

2.3. Landsat methods

We took advantage of the temporal range of Landsat by using a total
of 14 images (Table 2) spanning approximately twenty-five years rang-
ing from 1984 until 2008 and generally covering the summer months
(June–early September). Persistent cloud cover, common to the study
areas, prevented the use of anniversary dates and images for every indi-
vidual year up to the present. We applied a uniform mask to each of
the images to remove nonforested areas and clouds. Even partial
cloud cover resulted in a much larger masked area for all images, so
we chose to exclude images withmore than a few small clouds.We cre-
ated the non-forest mask using the 2001 National Land Cover Dataset
(NLCD) combined with a supervised classification. We implemented
the COST method of atmospheric normalization (Chandler, Markham,
& Helder, 2009; Chavez, 1996), which converts digital number (DN)
values to reflectance values. We tested the imagery for terrain effects
and found no relationship between illumination, determined using a
hillshade of the study areas, and the cumulative disturbance index
values (r2=0.0055); therefore, we did not apply a terrain correction.

Healey et al. (2005) introduced the disturbance index (DI) as a
Tasseled Cap-derived measure that can be used for forest disturbance
detection. We normalized each Tasseled Cap band to image-specific
z-scores, which partially accounts for phenological variation from
image to image. The DI highlights the fact that disturbed areas tend
to exhibit higher values of brightness (B) and lower values of green-
ness (G) and wetness (W) than undisturbed areas, resulting in high,
positive DI values for recently disturbed areas; low, negative DI values
for areas that have recently recovered from disturbance or experi-
enced abnormally rapid growth; and all other forest pixels, assumed
to be undisturbed, falling near zero (Healey et al., 2005; Fig. 2).

One difficultly in addressing forest change detection is finding
pixels within an image that can be called “undisturbed” with which
to compare disturbed pixels. Rather than comparing DI values with
one single previous or subsequent year, we compared each yearly
DI image with a DImin image, generated by taking the lowest, or
‘least disturbed’ DI value for each pixel from the stack of yearly DI im-
ages (Fig. 2). The DImin is essentially a composite of all image dates,
and it provides a snapshot of the forest in its least disturbed state
(Fig. 3). This allowed us to more objectively assess the total change
in DI from a relatively undisturbed state. The change detection be-
tween DImin and the individual yearly DI images consisted of a simple
image subtraction (Eq. (1); Fig. 2):

ΔDI ¼ DI–DImin ð1Þ

Thus, the resulting ΔDI images represent the change experienced
from the ‘least disturbed’ DImin image to each study year. One advan-
tage of estimating cumulative disturbance using ourΔDI images calcu-
lated using the DImin is that they essentially remove the potentially
confusing negative values associated with regrowth. By subtracting
the minimum values (DImin) from each DI image, the equation elimi-
nates negative values, which generally correspond with regrowth.
Thus, in the ΔDI images, the minimum value is never less than zero
(Fig. 2).

In order to obtain a value of cumulative disturbance, we summed
up all ΔDI images and applied an exponential weighting scheme
(Malczewski, 1999) to the sum, attributing the highest weights to
the most recent years and the lowest weights to the earliest years
(Table 3; Fig. 4). While this exponential weighting scheme was the
strongest of several other weighting schemes (e.g., linear) explored
in our preliminary analysis, it should still be viewed as a working
hypothesis quantifying how the impacts of disturbance are likely to
decrease over time.
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Fig. 2. Flowchart of the remote sensing methods used to create the cumulative disturbance index: 1) original image transformed using the tasseled cap transformation, 2) distur-
bance index (Healey et al., 2005) calculated using the normalized tasseled cap bands, 3) minimum DI values extracted from all images to create the DImin image, 4) a change map,
ΔDI, created for each year by subtracting the DImin, and 5) the final cumulative DI image created by combining each ΔDI image in a weighted sum. Non-forested land cover and
clouds are masked.
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2.4. AVIRIS methods

NASA's ER2 aircraft – housing the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) instrument – acquired high spectral
Fig. 3. The DImin classified by the year of origin for each pixel. Non-forested land cover
and clouds are masked.
resolution imagery at 20 km altitude using two flights on July 6 and
14, 2009. The spatial resolution of the imagery is 17–20 m, and the
spectral range of 374–2508 nm at 10-nm intervals covers 224 bands
(Green et al., 1998). The flights corresponded with field data collec-
tion within the study areas during peak summer growing months.
We acquired a total of four images over the study sites: two covering
SRSF and two covering GRSF. After pre-processing, we followed the
general methods of Martin et al. (2008) to create canopy N maps
from the 2009 AVIRIS data.

Image preprocessing involved five distinct steps, including the
development of an integrated cloud and cloud-shadow mask, cross-
track illumination correction, removal of overlapping bands, correc-
tion of atmospheric effects and conversion to top-of-canopy (TOC)
reflectance, and terrain illumination correction. After preprocessing,
the images were left with 183 bands to be used in the partial least
squares (PLS) regression equation.

We extracted reflectance spectra from the single nearest pixel to
each field plot coordinate from both study sites and all four images,
and then used PLS regression to relate field measurements of plot-
level canopy N with the remaining 183 bands of reflectance spectra
from the four AVIRIS images (Martin et al., 2008; Smith, Martin,
Table 3
The weights used to calculate the cumulative disturbance index. Weights were calcu-
lated using the following equation: (n−rj+1)P, where n = the total number of
years (25), r = the straight rank, and P=2 (Malczewski, 1999).

Image year Straight rank Weights Normalized

1984 25 1 0.000272183
1987 22 16 0.004354927
1990 19 49 0.013336962
1991 18 64 0.017419706
1993 16 100 0.027218291
1999 10 256 0.069678824
2000 9 289 0.07866086
2001 8 324 0.088187262
2002 7 361 0.098258029
2005 4 484 0.131736527
2006 3 529 0.143984758
2007 2 576 0.156777354
2008 1 625 0.170114317

Sum 3674 1

image of Fig.�2


Fig. 4. The exponential weighting scheme used to create the cumulative disturbance
index.

Fig. 5. Results from the PLS regression between plot-measured canopy N and AVIRIS re-
flectance values. (a) The relationship between plot-measured canopy N values and
AVIRIS-predicted canopy N values, (b) the factor loadings describing individual band
contributions from each of the four factors used in the PLS regression, and (c) the
PLS regression coefficients used in the calculation of canopy N from AVIRIS imagery.
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Ollinger, & Plourde, 2003; Smith et al., 2002). PLS allows for a regres-
sion analysis to relate a large number of independent variables to a
much smaller number of dependent variables by reducing the inde-
pendent variables into a specified number of latent factors. We used
four latent factors in our model because this number of factors mini-
mized the predicted residual sum of squares statistic (PRESS) given
within the PLS analysis (Townsend et al., 2003). The PLS regression
provided a set of regression coefficients and loadings for each band
(Fig. 5). We then applied the regression coefficients to the imagery
to generate the canopy N map (Fig. 6).

2.5. Statistical analyses

We used regression analyses to test whether increased cumulative
disturbance was predictive of decreased forest canopy cover at the
plot-scale and canopy N at the plot- and watershed-scales. For
watershed-scale analyses, we used fifty-four first-order watersheds
used in a previous study by Townsend et al. (2004) and in unpub-
lished related work. In order to account for any slight difference in
the plot locations and the image geometry, we ran a low pass filter
over the cumulative disturbance images, which averaged pixels in a
3×3 moving window across the entire image. We used the filtered
images to extract pixel values for statistical analysis. For comparison,
we also tested this relationship against the most recent ΔDI image for
each study area. This comparison allowed us to explore whether cu-
mulative DI was more associated with the additive impacts of distur-
bance than only the most recent year of imagery.

3. Results

3.1. Cumulative disturbance index

The cumulative DI map displays values ranging from 0.09 to 6.88 at
GRSF and from 0.03 to 8.05 at SRSF. Themost recentΔDI images display
values ranging from 0 to 26.95 at GRSF and from 0 to 19.78 at SRSF.
While the weighting scheme causes differences in their dynamic
range, the cumulative DI and most recent ΔDI maps both represent
relative disturbance intensities, with lower values representing less dis-
turbance and higher values representingmore disturbance. Themaps of
cumulative DI identify known patterns of clear-cut forest harvest and
gypsy moth defoliation that occurred throughout the study period
(Fig. 7). Forest harvest patterns were immediately evident, but cumula-
tive DI was more variable within areas that foresters had marked as
defoliated on the GIS sketch map ancillary data. These differences in
the mapped spatial pattern of disturbances match our knowledge of
these disturbance agents; harvested areas tend to be located in relative-
ly discrete areas defined by forest management practices, while defoli-
ations occur in varying intensities across the landscape.
3.2. Cumulative disturbance impacts on forest structure

The results from our regression analyses suggest that cumulative
disturbance has a negative effect on percent canopy cover (Fig. 8,
Table 4). Canopy cover has a significant relationship with the cumula-
tive DI map (r2=0.34), but does not have any significant relationship
with the most recent ΔDI images, indicating that percent canopy
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Fig. 6. AVIRIS-derived canopy N maps for both study areas. Non-forested land cover and clouds are masked.
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cover may be a product of the additive impacts of past and present
disturbances together, and not indicative of current disturbance sta-
tus. When we analyzed the two study areas separately, the relation-
ship remains significant with increasing strength (r2=0.66 and
r2=0.67 for GRSF and SRSF, respectively).

3.3. Canopy N maps

The four-factor PLS model accounts for about 78% of the variability
in plot-level measured canopy N (Fig. 5a) and about 63% of the vari-
ability in the AVIRIS reflectance spectra (data not shown). Root
mean square error (RMSE) is 0.16%N, which is low relative to the
mean canopy N of 2.0%N. The band loadings for each PLS latent factor
Fig. 7. Example visual assessment of the cumulative DI compared with GIS polygon data desc
(since 2000) disturbances within GRSF. Non-forested land cover and clouds are masked. Co
lative disturbance map: (a) shows variable levels of disturbance intensity within areas of k
forest harvest areas (right panel), and (c) generally shows minimal disturbance (green pixe
liation. In the case of SRSF, the recent defoliation event in 2007 was so extensive that the ma
cumulative DI.
describe the influential bands and can provide insight into the phys-
ical basis for spectroscopic detection of N. The first latent factor
accounts for 92% of the explained variability in the AVIRIS spectra
and resembled the general reflectance curve seen in vegetation
(Fig. 5b). The remaining factors emphasize many absorption features
that correspond with important leaf biochemical properties, such as
chlorophyll and N-containing proteins. These absorption features
are found in factor two at 560 nm, 1130 nm, and 1350 nm; in factor
three at 560 nm, 1140 nm, and 2436 nm; and in factor four at 560 nm,
1150 nm, 1353 nm, 1442 nm, 2067 nm, and 2446 nm (Fig. 5b). Exami-
nation of the loadings also reveals influential bands within the “red
edge”. The relationship between plot-measured canopy N and AVIRIS
canopy N is slightly less than unity (y=0.774x+0.4387), indicating
ribing recent gypsy moth defoliation (since 2007) within SRSF and recent forest harvest
nsistent with the known spatial patterns of the distinct disturbance agents, the cumu-
nown defoliation (left panel), (b) shows abrupt areas of high disturbance intensity in
ls) outside of areas designated by ancillary GIS polygon data on forest harvest or defo-
jority of forested land was affected. This is extensive defoliation event is evident in the
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Fig. 8. The relationship between plot-measured percent canopy cover and (a) cumula-
tive DI, and (b) the most recent ΔDI. The cumulative DI produced a strong relationship
with % canopy cover. Results displayed are significant to the 0.01 level. N.S. refers to
non-significant results.

Table 5
Results from the regressions (r2) between canopy % N values at the plot- and
watershed-scale and the different versions of DI. Non-significant results are indicated
by ns. Results significant to the 0.05 level are displaying in plain text. Results significant
to the 0.001 level are displayed in bold.

GRSF SRSF Both forests

Plot-level %N Cumulative DI ns ns ns
Most recent ΔDI 0.30 ns ns

Watershed-level %N Cumulative DI 0.40 0.57 0.54
Most recent ΔDI ns 0.18 ns
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that the dynamic range of the AVIRIS canopy N values is lower
than that of the plot-measured canopy N values (Fig. 5a). This
could introduce some error into our analysis; because, relative to
the field data, the AVIRIS-measurements may be a less sensitive
measure of canopy N.
3.4. Cumulative disturbance impacts on canopy N

Regression analyses focusing on the plot-measured canopy N
values display no significant relationship with cumulative distur-
bance (Table 5). However, the watershed-scale relationships be-
tween canopy N and cumulative disturbance are significant and
much stronger, but vary by study area (Fig. 9, Table 5). The stron-
gest relationship occurs at SRSF (r2=0.57), indicating that accumu-
lated disturbances control over half of the spatial variability in
canopy N during our study year (2009) at SRSF. Using the cumula-
tive DI to assess watershed-scale variability in canopy N at GRSF
produces a less strong, yet still significant, relationship (r2=0.40).
When considered together, the overall relationship for both forests
holds (r2=0.54).
Table 4
Results from the regressions (r2) between % canopy cover and the two versions of DI.
Non-significant results are indicated by ns. Results significant at the 0.01 level are
displayed in bold. Results significant to the 0.001 level are displayed in bold and italics.

GRSF SRSF Both forests

% Canopy cover Cumulative DI 0.66 0.67 0.34
Most recent ΔDI ns ns ns
4. Discussion

4.1. Cumulative disturbance index

The cumulative DI produces relatively strong relationships with
percent canopy cover at the plot-level and with canopy percent N
at the watershed-level. These results, combined with previous re-
search on the additive nature of disturbances (Foster et al., 2003;
Goodale & Aber, 2001; Latty et al., 2004; Pan et al., 2011) provide
evidence for the utility of a cumulative method for assessing distur-
bance impacts on forest functioning. The cumulative disturbance
index we have proposed represents a method for reconstructing a
forest's accumulated disturbance history without the need for
exhaustive, long-term field data collection, which is often unavail-
able or inconsistent (Cohen et al., 2010; Kennedy et al., 2010).
Using an exponential weighting scheme, the model acknowledges
years passed between image dates and accounts for them in the
weighting factors, which can be important because yearly images
are not always available due to cloud cover or other issues.
Fig. 9. The watershed-scale relationships between % canopy N and (a) cumulative DI,
and (b) the most recent ΔDI. The cumulative DI produced a strong relationship with
% canopy N. All displayed regression lines are significant at the 0.05 level.

image of Fig.�8
image of Fig.�9
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Building off work using Landsat time series stacks on temporal
trajectories of forest disturbance (Kennedy et al., 2007), two recent
companion papers by Kennedy et al. (2010) and Cohen et al. (2010)
describe Landtrendr, an algorithm designed to capture both distur-
bance trends and events in forests, and TimeSync, a visualization
and data collection tool designed for use in validating change algo-
rithms (such as Landtrendr). Huang et al. (2010) used an automated
approach, the vegetation change tracker (VCT), to distinguish forest
land cover types, mask clouds and water bodies, and map distur-
bances using Landsat time series stacks. Further developing these
types of methods will prove invaluable now that the entire Landsat
archive is available online for free download (Landsat Science Team,
2008). Our cumulative disturbance index may provide an additional
component for use in these types of algorithms, creating more com-
prehensive and biophysically relevant measures of forest disturbance
history.

Since a long-term, fine-grained, and spatially-extensive record of
disturbance is not currently available for our study area (and, in-
deed, would be extremely rare for any forest), a traditional error
matrix-approach to validating cumulative disturbance is not feasi-
ble. Nevertheless, our approach to mapping cumulative disturbance
with the DI is validated in three ways. First, Healey et al. (2005)
quantitatively assessed the accuracy of DI by creating 50 iterations
of a comprehensive error matrix comparing DI with manually digi-
tized reference maps. Subsequent studies have since used the DI
(DeRose et al., 2011; Eshleman et al., 2009; Hais et al., 2009) to
map disturbance in both conifer forests and eastern deciduous
forests. Second, our visual assessments of the cumulative distur-
bance maps using coarse-grained, ancillary GIS data showed that
our cumulative disturbance maps realistically reflect known pat-
terns of disturbances that occurred throughout the study period
(Fig. 7). Finally, the strong relationships with canopy cover (Fig. 8)
and canopy N (Fig. 9) demonstrate that the cumulative disturbance
index successfully captures biophysically-meaningful patterns in
forest functioning.

One limitation of the cumulative DI approach is that not every
year provides a cloud-free image, and in some instances, missing
years may be critical in reconstructing a site's disturbance history.
For example, the image for 22 August 2000 over GRSF contained
more clouds than most of the other images used in this analysis; so
as a test analysis, we created one cumulative DI that included this
image and one that did not. GRSF experienced a major gypsy moth
defoliation during this year, and the differences between our results
suggest this disturbance event was important to the cumulative DI.
The watershed-scale relationship between the weighted cumulative
DI and canopy percent N at GRSF went from being a non-significant
r2 of 0.10 without the inclusion of the 2000 image to a significant r2

of 0.40 with the inclusion of the 2000 image.
The implications of this test analysis are that the effectiveness of

the cumulative DI is contingent on the availability of data. The rela-
tionships we observed in this analysis were significant, even though
some years of imagery could not be included due to persistent cloud
cover, so it is very possible that the relationship could become stron-
ger with the inclusion of a full and complete set of input imagery.
There are several ways around this limitation. Image compositing
(Helmer & Ruefenacht, 2005; Roy et al., 2010) is a standard method
for dealing with extensive cloud cover. Another option is to map cu-
mulative disturbances with higher temporal resolution sensor (e.g.
MODIS), especially as the data record accumulates from sensors like
MODIS. Newly developed algorithms, such as Landtrendr (Kennedy
et al., 2010) and VCT (Huang et al., 2010; Thomas et al., 2011),
could also be used in future applications because they contain built-
in, automated methods for masking out or avoiding cloud cover.

The use of a DImin image for comparison in calculating forest dis-
turbance across multiple dates of imagery builds off and expands
upon previous work using ΔDI calculated from previous image years
(Fig. 4). Eshleman et al. (2009) used ΔDI and synoptic water quality
data to identify forest disturbance in a single watershed within
Green Ridge State Forest. They found a strong linear relationship be-
tween ΔDI value and streamwater export of nitrate, providing valida-
tion and lending support for the use of ΔDI as a reliable indicator of
disturbance intensity across broad scales. The advantage of the DImin

is that it alleviates the need to find a suitable reference year for com-
parison in change and disturbance detection. Though some level of
reference could potentially be achieved using the Landsat images
themselves (Cohen et al., 2010; Thomas et al., 2011), the DImin pro-
vides an alternative approach to finding a suitable reference image
for quantifying relative disturbance and change over a large temporal
period.

Future studies that wish to make use of the cumulative distur-
bance index may also benefit from exploring other methods of
weighting, such as other nonlinear weighting schemes. The indepen-
dent variable under consideration may also dictate the weighting
scheme selected. For example, forest structure and biomass often re-
cover at a more rapid pace than nutrient availability (Bormann &
Likens, 1979, Likens et al., 1978, Vitousek & Reiners, 1975). While
much work has been done on disturbance mapping and disturbance
dynamics, relatively little is known about the temporal trajectory of
recovery. Thus, further exploratory work on such a trajectory would
enhance the accuracy and value of the cumulative disturbance
index. For example, the forest disturbance dynamics explored by
Kennedy et al. (2007) and Huang et al. (2009, 2010) could be incorpo-
rated into future work to create weighting schemes based on ob-
served spectral changes over dense stacks of Landsat imagery,
which may result in more comprehensive cumulative disturbance in-
dices (e.g., Helmer et al., 2011; Li et al., 2011).

4.2. Cumulative disturbance and forest structure

Our results support the idea that disturbances have a cumulative
effect on forest structure. However, the differences between the study
areas in the relationship between cumulative disturbance and forest
structure (Fig. 8, Table 4) suggest that between-site differences may
be quite large and have the potential to weaken the relationship when
combining too many sites across different environmental gradients. In
our study, these within-site differences are likely due to the differing
species compositions of the two study sites. For example, GRSF is com-
posed largely of oak species, while SRSF has oaks as well as north-
ern hardwood and pine forest types. The diversity of species at SRSF
likely results in differing vulnerabilities and responses to disturbance
(Garnier et al., 2004; Peterson, 2007), which could have affected the
slope and intercept of the relationship between cumulative DI and
canopy cover. For this reason, it may be appropriate to include spe-
cies type as a secondary independent variable in a multiple regres-
sion equation for analyses designed to assess multiple forest types.

The relationship between canopy cover and cumulative distur-
bance contains implications about the continued ability of a forest
to sequester carbon after multiple years of compounding disturbance
events. The relative lack of explanatory power provided by using the
most recent ΔDI image compared with using the cumulative distur-
bance index suggests that the spatial variability in forest structure is
affected by long-term successional dynamics (Kardol, Todd, Hanson,
& Mulholland, 2010), and that studies assessing drivers of variability
in forest structure, carbon stocks, and carbon fluxes should consider
the additive effects of many previous disturbances.

4.3. Cumulative disturbance and canopy N

The PLS regressions using spectra from the AVIRIS images pro-
duced strong predictive relationships of canopy N (Fig. 5), and are
comparable with calibration relationships produced from previous
studies (e.g. Martin et al., 2008, McNeil et al., 2008, Smith et al.,
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2002, Townsend et al., 2003). In general, SRSF displays higher canopy
N values than GRSF, which could be a result of the differences in spe-
cies composition. Species composition also may have affected the
model accuracy. While similar species can be found at both study
areas, the greater representation of field plots within the less species
diverse GRSF forest (18 plots versus 10 plots at SRSF) may have influ-
enced the ability of the model to predict canopy N across both re-
gions. Nevertheless, the ability to directly map canopy N across the
study areas proved to be essential for detecting the expected nega-
tive impact of cumulative disturbance on canopy N. Specifically, the
AVIRIS-derived canopy N maps enabled us to average across local
variability in canopy N, and find a robust signal of cumulative dis-
turbance within the watershed-averaged values of canopy N. The
localized variability confounding a significant relationship between
field plot-measured canopy N and cumulative disturbance is likely
caused by species composition. In eastern North American forests,
species composition can explain up to 93% of the spatial pattern in
canopy N (McNeil et al., 2008). This impact of species composition
occurs from differences in the relative abundances of species with
inherent differences in foliar N (McNeil et al., 2008; Wright et al.,
2004), as well as the community-level impacts resulting from interac-
tions among species with differing resource and N cycling strategies
(Hobbie et al., 2006; Lovett, Weathers, Arthur, & Shultz, 2004;
McNeil, Read, & Driscoll, 2012).

In our study, visual inspections of the canopy N maps suggest that
different factors are driving the spatial patterns of canopy N to differ-
ing degrees in each forest. SRSF has been affected by several recent
years of intense and widespread gypsy moth defoliation, and the
stronger relationship between cumulative disturbance and canopy N
reflects the idea that this most recent disturbance may be a strong
control on canopy N in SRSF. The relationship with cumulative distur-
bance was less strong at GRSF, indicating that canopy N may be more
strongly controlled by species composition. For example, low values
of canopy N appear to follow a lower elevation band of white oak
stands found in GRSF (Fig. 6, Foster & Townsend, 2004). Even within
areas with good, stand-level species composition maps (as in our
study area — see Foster & Townsend, 2004 and related unpublished
maps at SRSF), running separate analyses for each species type
found in the study areas proves to be overly complex. Hence, we sug-
gest that quantitative measures of species composition are needed as
an alternative to running parallel stand-level analyses. In particular,
we suggest that measuring species by a continuous variable describ-
ing their canopy N responsiveness to disturbances could be incor-
porated as a secondary variable in a multiple regression equation
and possibly improve the relationship between canopy percent N
and cumulative DI.

In sum, while our results demonstrate a need to incorporate fine-
scale drivers of variability in N status such as species composition, we
have shown that field observations of the cumulative influence of dis-
turbances on N status (Foster et al., 2003; Goodale & Aber, 2001; Latty
et al., 2004) can be extended to a broader observational scale using
remotely sensed imagery. In addition to studies of N status, we sug-
gest that our approach for mapping cumulative disturbances may
also lend itself to future studies on other biogeochemical processes
(e.g. watershed-level retention of N and cations) that may be affected
by the accumulating effects of disturbance across multiple years.

5. Conclusions

The cumulative DI produces significant relationships with percent
canopy cover at the plot-level and with canopy percent N at the
watershed-level. These results, combined with previous research on
the additive nature of disturbances (Foster et al., 2003; Goodale &
Aber, 2001; Latty et al., 2004; Pan et al., 2011) provide evidence for
the utility of a cumulative method for assessing disturbance impacts
on forest functioning. Our results support our two original hypotheses
on the relationship of cumulative disturbance to canopy N and forest
structure. Namely, we found that an increase in cumulative disturbance
was associated with a decrease in both canopy N and forest canopy
cover. Moreover, our study provided insights into the nature of distur-
bance as it accumulates over time and contributes to a growing litera-
ture on the temporal properties of forest disturbance dynamics. The
cumulative DI consistently produced significant relationships at the
watershed scale, suggesting that past disturbances do diminish over
time but still influence the current condition of a forest. Using only
the most current ΔDI maps consistently produced weaker, non-
significant relationships, suggesting that current imagery alone may
not be adequate to describe the disturbance legacies present in eastern
forests. Thus, by detailing an approach for mapping the cumulative im-
pact of disturbances and demonstrating the biophysical relevance of
this approach in predicting current spatial patterns of canopy cover
and canopy N, our study provides a useful step toward better under-
standing the long-term impacts of disturbances on forest processes
and functions.
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